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Abstract. The E@e Jahn-T~ersystemisstudiedin thestrongcouplinglimitan a 
duster model using the transformation and aergy " h a t i o n  method developed 
originally for orbital triplets by Dunn and Bates. Simple analytical expressions for 
the ground and first excited states together with their energies are derived when the 
potentid energy surface is warped by either " o n i d t y  or quadratic coupling. 
Anisotropic corrections are then added to both the vibronic states and their energies 
and the inversion splitting is calculated. It is shown that the results obtained are in 
agreement with previously published numerical mults. 

1. Introduction 

Over the last 25 years, the E@e Jahn-Teller (JT) system has been extensively studied. 
Many experimental measurements on orbital doublet ions have been carried out and 
the results have been interpreted in terms of at least one of the equally numerous 
theories which also exist. Much literature covering the theory has also evolved dealing 
with a variety of botb physical and mathematical concepts. 

The most important of the earlier theoretical analyses were probably those of 
Bersuker (1963), O'Brien (1964) and Ham (1968). Since then different aspects of the 
theory have been discussed by many authors (see, for example, the review by Bates 
(1978) and the recent book by Bersuker and Polinger (1989) for detailed references to 
many of these articles). Among the analytical approaches to the problem, we cite the 
work of Fletcher (1972), Polinger and Bersuker (1979), Judd (1977), Barentzen et d 
(1981) and Chancey (1984) as typical of the many methods which have been used. The 
major difficulty with this JT system is that, unlike a pure T@e JT system (but similar 
to T @ t, and T @ (e + t,) systems), an exact analytical treatment is unobtainable. 
This inevitably means that solutions can only be obtained by approximate methods. 

In orbital doublet systems, the potential energy surface in linear coupling has a 
continuous set of minima which are commonly described as forming a 'Mexican hat'. 
In real E @ e systems, isolated minima arise from either an ion-lattice interaction 
term which is quadratic in the displacement coordinates Qj or vibrations which are 
anharmonic in the Qjs. Both terms warp the potential energy surface so that three 
minimaare formed as a result of one of these terms acting either separately or together. 
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The height of the barriers are thus determined by a parameter which is independent of 
the strength of the linear part of the ion-lattice coupling. This can be compared with 
the T 8 e JT system where linear coupling automatically warps the potential energy 
surface. 

Discussions of the theory when weak warping is present were given, for example, 
by O’Brien (1964). This is sometimes referred to as ‘hindered rotation’ as the angular 
motion is hindered by the small potential barriers. When the barriers between the 
minima are much higher, states located in the wells are much better approximations 
than the rotational states. Generally, the barriers are not infinite and the system 
tunnels between the wells. This tunnelling lifts the degeneracy of the states located 
in the wells and gives rise to an inversion or tunnelling splitting. This tunnelling ap- 
proximation was considered in some papers; we refer specifically here to the numerical 
work of Sakamoto (1982) as this will be used for comparison purposes later. 

The object of this paper is to describe an analytical method for studying strongly 
coupled E 8 e JT systems in which a significant amount of warping can be incorpo- 
rated. Under these conditions, previous work has been restricted almost entirely to 
numerical methods. The basic idea of the method is to apply a unitary transformation 
to the Eamiltonian followed by an energy minimization procedure. This method was 
devised originally by Maier and Sigmund (1984, 1986) for the ra @ (e + tz)  system. 
It was subsequently applied to strongly coupled orbital triplet systems by Dunn and 
Bates (described in Bates et a/ 1987, Dunn 1988, Bates 1989). From this approach, 
many properties of the orbital triplet system have been obtained by analytical means 
particularly the important second-order reduction factors (Polmger et a/ 1991, Bates 
et al 1991). It seems sensible therefore to undertake a similar analysis for the E 8 e 
system. Thus the method will be used here to obtain expressions for some of the more 
useful parameters describing the E 8 e JT system in strong coupling which have not 
been obtained previously by analytical methods. 

The basic theory of the method will be given and transformed eigenstates obtained 
for both types of warping from the largest term in the transformed Hamiltonian. The 
energies of the ground states will then be calculated and thus the inversion splitting 
will be obtained. At this stage, the results will not be new. The calculation will then 
be improved by including the remaining terms in the transformed Hamiltonian; these 
generate anisotropy in the vicinity of the wells. These results are new; they will be 
compared with existing numerical results where it is possible to do so. 

A second paper (Badran and Bates 1991) will shortly be published which uses the 
results obtained here to calculate the JT reduction factors. 

R I Badran and C A  Bates 

2. Mathematical  formalism and the transformation 

We consider the orbital doublet E state (modelled by a fictitious orbital operator 
T = $) of an ion which is at the centre of a tetrahedral cluster. For linear coupling 
to the e-type displacements Qe,Q,  of the cluster, the ion-lattice Hamiltonian is: 

Hint = ~ ( Q o T I  + QeTJ (2.1) 
where V, is the linear ion-lattice coupling constant. With a twofold z-axis of the 
tetrahedral cluster used as the axis of quantization, the components of the orbital 
operator T are: 

TI = ?(lW - l M )  (2.2) 
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and 

Tz = -W)(.l+ I.)Pl) (2.3) 

where IS) = 13r2 - r2) and 16) = 12' - y2) are the orbital basis states. In second 
quantized form, the displacements Qj are defined as 

fo r j=O,c .  

The momenta conjugate to Qj are 

where 6: and 6j are the phonon creation and annihilation operators respectively. The 
Hamiltonian describing the kinetic and elastic energies for the harmonic lattice is 

where pj and w j  are the mass and frequency of the j t h  mode respectively. 
The potential surface of this idealized system consists of two sheets (e.g. Ham 1968, 

Bersuker and Polinger 1989). The lower sheet forms a two-dimensional trough (the 
'Mexican hat'). In real systems, we must add the warping terms to the Hamiltonian. 
The first of these is the quadratic coupling which may be written in the form 

%,"ad = VzP'i(Qf - (2;) + 2TzQeQ.1. 

'%hap = BQ.g(Qi - 3Q3. 

(2.7) 

The second warping term arises from anharmonicity. This may be written as 

(2.8) 

In both cases, three minima are introduced in the bottom of the trough with either 
one acting separately or with both acting together. 

An alternative view of the problem can be obtained by applying a unitary trans- 
formation to the total Hamiltonian E. (31 is defined as the s u q  of 'Hint, Evib and 
either XqUad or 7iHanhar or both.) As in the case of orbital triplets, the chosen unitary 
transformation U has the form 

(2.9) 

This transformation has the effect of displacing each of the Qj by a certain amount 
(= -aj/ i) .  The oj are free parameters. However, the first objective of the analysis is 
to find the values of mj when quadratic coupling and/or anharmonicity are present. 

To do this, we consider the transformed Hamiltonian 'H. It has the form 

77 = u-131u = fi1 +7& +713. (2.10) 
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Considering the quadratic coupling term only, we have 

el = -hVE(a,T,+a,T2)+ ~ h 2 C p i j w : a ~ + + ~ C j + x ( a s , c u , )  (2.11) 

G2 = 'Hint - Cbjwi@jQj + ~ ( 8 0 ,  QJ + K ( a e Q e !  a,Q,) 

j a 

(2.12) 
i 

j 

with 

(2.13) 

(2.14) 

(2.15) 

and 

The transformed Hamiltonian el contains electronic operators only and is indepen- 
dent of the phonon coordinates Q j .  For strong coupling, the aj are relatively large so 
that el is the largest term in 2 as it contains the ns and no Qs. It can be regarded 
therefore as the unperturbed Hamiltonian. The remaining terms are perturbations on 
the eigenstates of g,. ?i2 contains phonon operators via the Qj and thus it couples 
together the phonon states while fi3 is responsible for generating the set of  excited 
phonon states which accompany each orbital state. 

Consider first $, only. It is a good Hamiltonian for determining approximate 
ground states of 'H and it can be partially diagonalized by using the orbital states 
10) and 16) as basis states. The eigenvalues E of the resultant 2 x 2 matrix are easily 
found to be 

E = q + (a2 + b2)'I2 (2.17) 

where 

a = *hVEa, 

b = $hVEa, - h2V2a,a, 

and 

(2.18) 

Previously, we have taken pa = pe = p and w g  = we = wE and the zero-point energy 
LE has been omitted. The associated states are written as 10; 0,O) and IC; 0,O) where 
the '0' signifies that the e-type oscillators 0, c are both in their ground state. 

The important question is how to determine the values to use for the a j .  The most 
obvious choice is to take values for the aj which minimize the energy E associated 
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with F?,. To do this, it is simpler to rewrite the ffj in polar coordinates (a,P) such 
that 

ag = a cos ,O a( = sin p (2.19) 

and solve for 

aE _ -  BE - = o  
ap - O  aa 

If V,, V, are both taken to be positive or both negative, a and p are given by 

p = $ n a  (=On) ( n = 0 , 2 , 4 )  

Q = ffo8- 

where 

with 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

L is one of the important parameters for the problem. It is expected to be small as it 
is equal to the warping energy associated with the quadratic coupling divided by the 
elastic energy (- LE). 

The result (2.22) defines the three wells (labelled by k) which are absolute minima. 
Each has the same JT energy EJT where 

(2.24) 

The labels k = 1 , 2 , 3  correspond to p = 0 , 2 ~ / 3 , 4 a / 3  and to the ground states in the 
wells which are written as lf7,;O,O),IS,;O,O), l8,;0,0) respectively. It is readily seen 
that if either V, or V. is negative, the minima occur at angles given by (2.21) but 
with n = 1 ,3 ,5 ;  the parameters ao, 41- and EJT are unchanged. 

This result is exactly equivalent to the well known result described earlier that 
the quadratic terms warp the Mexican hat into what is sometimes seen as a tricorn. 
However, the formalism developed explains how this may be described mathematically 
and sets up the vibronic states localized in the potential wells. 

3. The cubic eigenstates and their energies 

As in the case of orbital triplet systems, the theory described here departs from other 
approaches at this point. We recall that the states obtained earlier are located within 
the wells and are thus in the transformed space. They may each be transformed back 
to the original space by applying the operator U after substitution of the appropriate 



6334 

value of aj. That is, the untransformed eigenstates in the three wells can be written 

R I Bidran and C A  Bates 

as 
ie:;o,o) = u,is,;o,o) 
iei;o,o)=u,ie,;o,o) (3.1) 
le;;o,o) = u,Is,;o,o). 

They are triply degenerate due to the equivalency of the minima but they are not 
exact eigenstates of 72 nor are they orthogonal to each other. 

An important quantity is the overlap SE (= (S~;O,O[8~;0,0) = (O,;O,OlU$ 
U,lS,; O,O), for example) between the ground state oscillators associated with different 
wells. To calculate this overlap SE between the oscillator parts of these untransformed 
states, we write the operator U, in the form: 

where 

Thus we obtain 

(3.3) 

so that the overlap SE depends explicitly on the Huang-Rhys factor Se (= EEe/rWE). 
As in the case of orbital triplets,the cubic symmetry of the problem may be regained 
by taking linear combinations of the three untransformed eigenstates (3.1). Detailed 
analysis shows that the required states are 

where [El),  [E,) form a doublet and IA,) an excited singlet state. NE and N A  are the 
normalizing factors given by 

- -  

NE =/- 1 
1 + $SE 

(3.7) 
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The energies of these states are easily calculated and are found to be 

Thus the separation between the two states (the inversion splitting) 6 is given by 

(3.10) 

6 is clearly positive; this is the well known result that the ground state remains a 
doublet. 

The cubic states (3.6) appear to have a very similar structure to those quoted by 
other authors (e.g. Bersuker and Polinger 1989 equation (4.3.25)). However, there is 
an important difference in that 1.5’:; 0,O) etc contain the operator Us which means that 
the states (3.6) contain phonon excitations. This has a very important bearing on 
several of the subsequent calculations and represents the new features in this work. 

It should also be noted that the cubic states are not continuous functions of the 
space variables Qe and Q,. Instead they are particular combinations of states con- 
structed at particular points in Q-space. It is unclear therefore whether it is necessary 
to incorporate the factor due to Berry’s phase (e.g. Ham 1987, 1990). However, as 
the inversion splittings have the correct sign, we assume that the omission of Berry’s 
phase is not important. 

4. The case of anharmonicity 

Before refining the model, it is necessary to look at anharmonicity as an alternative to 
quadratic coupling. The calculations proceed in a similar way but they are inevitably 
more complicated because cubic terms in Qj are involved. Thus equations (2.14)- 
(2.16) are replaced by the equations: 

~ ( a , ,  a,) = Ba0(3af - aih3) (4.1) 

x(Qe, Q,) = ‘&hap (4.2) 

~ ( a ~ Q 0 ,  a,Q,) = 3B[-Q&@+ Q,(a; - a:)h2 + Q:agtr + 2Q0Qra,fi - 2Q,a,a,h2]. 

(4.3) 
The energies are given by (2.17) as before but with 
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Minimization gives minima as before with the same a,, but with 

R I Badmn and C A  Bafes 

1 
4- = - 1 - L' 

~ 

where 

(4.5) 

L' is the parameter rrhich describes the amount of warping from anharmonicity 
and is expected to be small compared with unity. It is more complicated than the 
corresponding parameter L representing the warping due to the quadratic coupling 
as it involves the ion-lattice coupling constant V, as well as the warping and elastic 
energies. 

The symmetry-adapted states in T., symmetry are given by (3.6) and their energies 
by (3.8) but with 

The inversion splitting is then given by 

I t  can be seen that, although the general forms of the inversion splittings are similar, 
that for anharmonicity is more complicated than for quadratic coupling on account of 
the additional polynomial in L'. This result is not unexpected on account of the more 
complicated form of the original expression. 

5. Introduction of anisotropy 

The states and energies derived previously are only approximate because they have 
been obtained by only using fil. punn  and Bates (1989) have shown that, for orbital 
triplets, when the Hamiltonian Xz is added as a perturbation on the eigenstates of 
f i ,, anisotropic effects are introduced. This description is used because the extra 
terms cause the shape of the potential wells to depart from a pure harmonic form. 
These changes alter the frequencies of the oscillators, they modify the eigenstates (3.6) 
and correct the inversion splitting. In addition, they also have significanj effects on 
calculations of the reduction factors. We thus consider here the effects of X,, as given 
by equation (2.12), on the E @ e problem. The effects of Xqud will be discussed first 
followed by Xanhar. With the transformation method described earlier, it is possible 
to carry out many of the calculations analytically as in the case of orbital triplets. The 
analytical calculations here thus go beyond those discussed in Bersuker and Polinger 
(1989), for example. 
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5.1. Anisotropy from “Lquad 

To first order, the corrected transformed states for the k = 3 well is 
- 
le,;o,O)= l e , ; O , O ) t  Po,) (5.1) 

where 

Po,) = Al[le,;0,2)-le,;z,O)l t A ~ l € ~ ; O , l )  t A & z ; L 1 ) .  (5.2) 

The parameters A,, A, and A, are given by 

with 

(5.3) 

In the states (5.2), the first symbol denotes the symmetry of the orbital state and the 
symbols after the semicolon give the number of phonon excitations in the 0, c oscillator 
states respectively. The ground states associated with the other two wells are obtained 
directly from (5.1) by appropriate cyclic permutations of the labels r, y and z on both 
the orbital and phonon states. Note that excitations in the oscillator states of r-type 
etc (i.e. e,, 6,) can be defined in terms of those of z-type by relations such as (Dunn 
1988) 

11 O),  = (-$q ++&:)lo o)z (5.5) 

where the suffixes t and Y attached to the kets denote the type of oscillator state. 
The corresponding cubic states [El), [E,) and IA,) can be written down directly 

from /E,), IE2) and I A 2 ) e i v e l y  as given in (3.6). This can be done by replacing 
ISi;O,O) etc in (3.6) by le,;O,O) from (5.1) and by the additional replacements: 

NE - NA,NA -+ NA. 

These quantities may be obtained in turn from replacing SE by SL where 

SL = SE [1 - -d2A, 3 - 3dA, + 5d2A3]  9 
J2 

with 

a= (yipwE)*’2no~-. (5.7) 

The corresponding energies EL, and Ea may be evaluated using the formulae given 
in Bates et a1 (1987) and Dunn (1989). The results are given by (3.8) with the 
replacements: 

E,, + E; ,  E,, + E; ,  SE -+ SL. (5.8) 
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After much algebra, and, as L is small, including only terms linear in L, we obtain 

E:, = -E&$- + rWE[(l- FL(1- ZL)] 

E;2 = fs~$![5E&(Gl + i F i ( 1 -  ZL) - $jF,L)] (5.9) 
- ~ L E [ ( G ,  + 4FlGs + !F,L)] 

where 

(5.10) 

G, = (1 - Y L )  

with 

u = $ ? / J .  (5.11) 

The expressions for the energy of the ground state within a well can he interpreted 
in an alternative way. As discussed by Dunn and Bates (1989), that part of the energy 
derived from 'i& can be regarded as changing the oscillator frequencies. As the wells 
have D,, symmetry, these effective frequencies w A  and wB wih be different from each 
other. In the strong coupling limit of J tending to 0, we have 

(5.12) E ; ,  = -E&$- + ;tWE(l+ L) 

50 that 

W A  + wg = $ ( l  + L)wE (5.13) 

which has shown that anisotropy has reduced the value of the sum of the effective 
frequencies as in the case of orbital triplet systems. Unfortunately w A  and wB are not 
individually defined by (5.13). We also note that the formulae are invalid for very 
small values of L as the barriers will become smaller. 

An alternative procedure for obtaining the effective frequencies is to treat Qe and 
Q, as dynamical variables and use the form for 9, given by (2.12) on the pure orbital 
ground state. 9, has no effect in first-order, but the second-order correction to the 
energy of the ground state gives the result 

w i  = wg(1 - L) for Qe (5.14) 

and 
1 - L  

w; = 9Lw;- for Q,. 2 - L  (5.15) 

The two methods have given different answers for the millator frequencies. The 
first method is more accurate as it involves accurate states. However, the results for 
w i  and w;4 obtained by the second method are identical to those reported by Bersuker 
and Polinger (1989 equation (3.1.23)). It is also apparent that wg tends to zero as L 
tends to zero. This result is consistent with that obtained without the barriers as the 
oscillatory motion is converted to rotational motion around the bottom of the trough. 
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5.2. Anisotropy f” XonhDr 
The corrected transformed ground states to first order for the k = 3 well are the same 
as those given by (5.1) but with 

IAS,) = X ; [ I B , ; O , ~ )  - I S , ; ~ , O ) I +  X;IC,;O, 1)  - x;ie,;3,0) + xle,; 1,2) 

and with 

(5.16) 

A; = 

A; = J 3 4 .  

(5.17) 

Similar expressions can be obtained for the other wells by cyclic permutation of the 
labels. 

The cubic states and their energies follow in exactly the same way as for quadratic 
coupling. Thus (3.6) and (3.8) again apply with the substitutions of SE for SE, E;, 
for E,, and Er2 for E,, where, for the oscillator overlap, we have 

and for the energies we have 

EI; = -E&4-(1- 4L’) + hWE(1- 2A1) 

El ,  - I I  - 1st’ 3 E  
E$- Ee[(5 - eL’ + ~ L ’ u )  - 8Al(1 - $2 - 3 ~ ’  8 U) 

- 2J(1 - 3L’ + 3A,(1 - 2L’))I 

where 

A, = & 

(5.18) 

(5.19) 

(5.20) 

(The previous expressions are correct to first-order in L‘ only.) 

6. Inversion splittings 

Different JT models can be compared by examining the results of calculations for the 
inversion splittings and the reduction factors. It is appropriate here to consider the 
inversion splittings and defer comparison of the reduction factors to a second paper 
(Badran and Bates 1991). 

The inversion splitting, including anisotropic terms, can be obtained directly from 
substitution into (3.8). For quadratic coupling, we obtain the result correct to terms 
linear in L: 
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E!, 'nu! 

Figure 1. Plotrof theinversionsplitting6asafunctionof EsC (bothinunitsof K q )  
showing the result obtained I" the isotropic f a "  (3.10) for quadratic coupling 
and (4.8) for anh-onidty and from the corresponding anisotropic corrections with 
L = 0.1 (from (6.1)) and with IL'I = 0.1 (from (6.4)) respectively. The key is as 
follows: ----, isotropic quadratic and anharmonic; - - -, quadratic coupling with 
anisotropy; aoharmonidty with anisotropy. 

where 

G', = 1 - Y L  + ~ L u  
G' 2 -  - 1 - % L  

G; = 1 - F L  
(6.2) 

with 

Sk = SE( l  + ~ L u  + 3F1 + ;F,L). (6.3) 

An analogous expression for the inversion splitting can be obtained when the anhar- 
monic term is included in place of the quadratic coupling term. The result is 

with 

S g = S E ( l + $ L ' u - A l ( l + L ' ) ) .  

Even though the detailed calculations for the inversion splittings are very different 
from each other, the final results have similar forms up to terms linear in L(L'). 
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Figure 2. As figwe 1 but with L = IL'I = 0.2. 

0.12 0.14 0.16 0.18 
L 

Figure 3. Plots of 6 as II function of the quadratic coupling parameter L from both 
the isotropic (- ---) and anisotropic formulae (- - -) taking J = 0.22. 

To illustrate the results, it is convenient to draw appropriate graphs. Figures 1 
and 2 show how the inversion splitting 6 varies with the JT coupling strength (in the 
form of EEe/liwE) for two specific values of 0.1 and 0.2 for L or L'. They show plots 
of 6 using the simple isotropic formula given in (3.10) and (4.8) (which are virtually 
the same as each other) and with the anisotropy corrections from quadratic coupling 
(equation (6.1)) and anharmonicity (equation (6.4)). Figure 3 shows plots of 6 as a 
function of the strength of the quadratic coupling parameter L taking J = 0.22 both 
excluding and including anisotropy. 



6342 

7. Discussion 

We have shown that the unitary transformation method, which was developed origi- 
nally for orbital triplets, can also be used for orbital doublet systems provided either 
quadratic coupling or anharmonicity are added into the basic Hamiltonian. Such 
terms, which generate minima in the potential energy surface, are expected to he ap- 
propriate and significant in real systems. The calculation for the E @ e system are 
simpler than those for orbital triplet systems primarily because the analysis requires 
the evaluation of a 2 x 2 rather than a 3 x 3 matrix. However, there are two inde- 
pendent but fundamental coupling parameters namely VE and V, or B whereas in the 
case of orbital triplets the second coupling parameter VBL had much less importance. 

As mentioned in the introduction, the main advantage of the transformation 
method for studying JT systems is that the method is analytical throughout, This 
means that the various quantities of interest can be calculated directly from the formu- 
lae and any functional dependence can be determined very easily. It is then straight 
forward to generate any graphs required. The disadvantage of the method is that 
approximations have to be made in the derivation of the formula such as in the per- 
turbation expansion of the anisotropy which get rapidly more complicated with the 
order of the perturbation correction. However, it should be noted that the corrections 
which comprise the ‘anisotropy’ contain all terms (including the kinetic energy) from 
the original Hamiltonian which were omitted in the analysis which followed from gl 
alone. 

The ultimate test of the method is the accuracy of the final results. Here, we 
have only the inversion splitting to discuss. We look first at figures 1 and 2. In 
strong coupling, the magnitude of 6 depends primarily on the simple overlap SE. 
When anisotropy is introduced, the overlaps become Sk and Sg which are larger than 
SE such that Sk > Sg. This is anticipated because the effect of the anisotropic 
Hamiltonian G2 is to change the shape of the potential minima. The expressions (6.1) 
and (6.4) for 6 involve very complicated polynomials in J and L (or L’) so that it 
is very difficult to make direct comparison of the results. For the expressions to be 
valid, L (L‘) must be sufficiently large that minima are produced in the potential 
surface (section 2) but not too large so that only terms up to first order in L (L’) are 
needed. Thus the values chosen to produce figures 1 and 2 were L = L‘ = 0.1 and 
0.2 respectively in order to meet these conditions. The method would be accurate for 
higher values of L(L‘) provided second-order terms were added. However, the algebra 
required would be much more complicated. The general appearance of the graphs 
shown in figures 1 and 2 is consistent with 6 dominated by a decreasing exponential 
factor involving EEe/liWE modified slightly by L (or L’). 

It appears that few other calculations of 6 have been undertaken with which our 
results can be compared and those which do exist have ranges for the parameters 
which are incompatible with our own. A comparison has been made between figures 1 
and 2 and with the calculation of O’Brien (1964) of the energy spectra for hindered 
rotation in the E@e system. By extrapolation of the two sets of data, it was found that 
the values of 6 found by O’Brien when (EEe/rWE) < 4 are slightly larger than those 
deduced here but they are of the sameorder of magnitude. The only other calculations 
which can be compared with our own are those of Sakamoto (1982) for the case of 
quadratic coupling. However, there are difficulties again as only values of L which are 
less than of order 0.075 can be extracted from the work of Sakamoto (1982) and these 
regions of L are outside the range of applicability of our calculations. If we forget this 

R I B a d m n  and C A  Bates 
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lack of compatibility between our analytical calculations and the numerical work of 
Sakamoto (1982) we can compare the two results. We find that our values of 6 appear 
to be smaller. For example, for L = 0.05, Sakamoto finds 6 ss 3 x compared 
with our values of approximately 4 x for the isotropic case and approximately 
3 x lo-' for the anisotropy calculation. 

Finally, the magnitude of 6 found analytically and displayed in figures 1-3 is 
sufficiently small that the inversion level must not be overlooked in any modelling 
of strongly coupled orbital doublet ions. It would appear that the transformation 
method is a suitable alternative method for the study of E@Ie JT systems particularly 
in regions where other theories are inappropriate. It is as accurate as the perturbation 
theory used in the derivation of the effects caused by anisotropy. This implies that 
for infinite coupling an infinite perturbation expansion is necessary but for moderate 
to very strong coupling, the approximation would appear to be most appropriate. 

The theory described here can be extended readily to calculate the excited states 
and their corresponding energies of E @ e  JT systems. However, as it is rarely possible 
to compare such calculations with experiment it seems more appropriate to calculate 
more directly measurable quantities such as the reduction factors. These results will 
be published later (Badran and Bates 1991). 
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